메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hayoung Song (Chungnam National University) HyeRan Kim (Korea Research Institute of Bioscience and Biotechnology) Byung‑Ho Hwang (Biotechnology and Breeding Institute of Asia Seed Co.) 이한길 (Chungnam National University) Yoonkang Hur (Chungnam National University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.42 No.12
발행연도
2020.1
수록면
1,407 - 1,417 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Background: Low temperature (LT) or cold stress is a major environmental stress that seriously affects plant growth and development, limiting crop productivity. Cold shock domain proteins (CSDPs), which are present in most living organism, are involved in RNA metabolisms influencing abiotic stress tolerance. Objective: The aims of this study are to identify target gene for LT-tolerance, like CSDPs, characterize genetics, and develop molecular marker distinguishing LT-tolerance in cabbage (Brassica oleracea var. capitata). Methods: Semi-quantitative RT-PCR or qRT-PCR was used in gene expression study. LT-tolerance was determined by electrolyte leakage and PCR with allelic specific primers. Results: Allelic variation was found in BoCSDP5 coding sequence (CDs) between LT-tolerant (BN106 and BN553) and -susceptible inbred lines (BN107 and BN554). LT-tolerant inbred lines contained variant type of BoCSDP5 (named as BoCSDP5v) which encodes extra CCHC zinc finger domain at C-terminus. Association of LT-tolerance with BoCSDP5v was confirmed by electrolyte leakage and segregation using genetic population derived from BN553 and BN554 cross. Allelic variation in BoCSDP5 gene does not influence the rate of gene expression, but produces different proteins with different number of CCHC zinc finger domains. LT-tolerance marker designed on the basis of polymorphism between BoCSDP5 and BoCSDP5v was confirmed with samples used in previous B. oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) marker validation. Conclusions: LT-tolerant allele (BoCSDP5v) is dominant and independent of CBF pathway, and sufficient to generate molecular markers to identify LT-tolerant cabbage when it is used in combination with another marker, like BoCCA1-derived one. Production and analysis of overexpressing plants of BoCSDP1, BoCSDP3, BoCSDP5 and BoCSDP5v will be required for elucidating the function of CCHC zinc finger domains in LT-tolerance.

목차

등록된 정보가 없습니다.

참고문헌 (60)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0