메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조준표 (세종대학교) 송지현 (세종대학교)
저널정보
한국냄새환경학회 실내환경 및 냄새 학회지 실내환경 및 냄새 학회지 제20권 제1호
발행연도
2021.1
수록면
68 - 75 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
In this study, a manganese catalyst on the surface of a ceramic support was developed for the removal of odor emitted from barbecuing restaurants. Its ozone oxidation at room temperature was tested using acetaldehyde (CH3CHO), the most dominant compound in the barbecuing odor, and the ozonation efficiency under wet conditions was also studied. The manganese catalyst was made with the honeycomb-type ceramic support, and an acid pretreatment was applied to increase its specific surface area, resulting in an increase of the degree of dispersion of manganese oxide. The acetaldehyde removal efficiency using the manganese catalyst on the acid pretreated support (Mn/APS) increased by 49%, and the ozone decomposition rate and the CO2 conversion rate also increased by 41% and 27%, respectively. The catalyst without surface pretreatment (Mn/S) showed a low efficiency for the acetaldehyde ozonation, and other organic compounds such as acetic acid (CH3COOH) and nonanal (CH3(CH3)7CHO) were found as oxidation by-products. In comparison, CO2 was the most dominant product by the ozonation of acetaldehyde using the Mn/APS. When the relative humidity was increased to 50% in the influent gas stream, the acetaldehyde removal efficiency using the Mn/APS decreased, but only the production rates of CO2 and acetic acid were changed. As a result, the manganese oxide catalyst on the surface of the acid-pretreated honeycomb support manifested high acetaldehyde ozonation even at humid and room temperature conditions.
#.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0