메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gasparyan Armen Yuri (Departments of Rheumatology and Research and Development Dudley Group NHS Foundation Trust (Teachin) Yessirkepov Marlen (Department of Biology and Biochemistry South Kazakhstan Medical Academy Shymkent Kazakhstan.) Voronov Alexander A. (Department of Marketing and Trade Deals Kuban State University Krasnodar Russia.) Maksaev Artur A. (Department of Management and Trade Deal Krasnodar Cooperative Institute Branch of Russian Universit) Kitas George D. (Departments of Rheumatology and Research and Development Dudley Group NHS Foundation Trust (Teachin)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.36 No.11
발행연도
2021.1
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the era of digitization and Open Access, article-level metrics are increasingly employed to distinguish influential research works and adjust research management strategies. Tagging individual articles with digital object identifiers allows exposing them to numerous channels of scholarly communication and quantifying related activities. The aim of this article was to overview currently available article-level metrics and highlight their advantages and limitations. Article views and downloads, citations, and social media metrics are increasingly employed by publishers to move away from the dominance and inappropriate use of journal metrics. Quantitative article metrics are complementary to one another and often require qualitative expert evaluations. Expert evaluations may help to avoid manipulations with indiscriminate social media activities that artificially boost altmetrics. Values of article metrics should be interpreted in view of confounders such as patterns of citation and social media activities across countries and academic disciplines.

목차

등록된 정보가 없습니다.

참고문헌 (84)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0