메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kang Myeongkyun (Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea.) Hong Kyung Soo (Division of Pulmonology and Allergy Department of Internal Medicine Regional Center for Respiratory) Chikontwe Philip (Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea.) Luna Miguel (Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea.) Jang Jong Geol (Division of Pulmonology and Allergy Department of Internal Medicine Regional Center for Respiratory) Park Jongsoo (Department of Radiology Seoul National University Hospital Seoul Korea.) Shin Kyeong-Cheol (Division of Pulmonology and Allergy Department of Internal Medicine Regional Center for Respiratory) Park Sang Hyun (Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea.) Ahn June Hong (Division of Pulmonology and Allergy Department of Internal Medicine Regional Center for Respiratory)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.36 No.5
발행연도
2021.1
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: It is difficult to distinguish subtle differences shown in computed tomography (CT) images of coronavirus disease 2019 (COVID-19) and bacterial pneumonia patients, which often leads to an inaccurate diagnosis. It is desirable to design and evaluate interpretable feature extraction techniques to describe the patient's condition. Methods: This is a retrospective cohort study of 170 confirmed patients with COVID-19 or bacterial pneumonia acquired at Yeungnam University Hospital in Daegu, Korea. The lung and lesion regions were segmented to crop the lesion into 2D patches to train a classifier model that could differentiate between COVID-19 and bacterial pneumonia. The K-means algorithm was used to cluster deep features extracted by the trained model into 20 groups. Each lesion patch cluster was described by a characteristic imaging term for comparison. For each CT image containing multiple lesions, a histogram of lesion types was constructed using the cluster information. Finally, a Support Vector Machine classifier was trained with the histogram and radiomics features to distinguish diseases and severity. Results: The 20 clusters constructed from 170 patients were reviewed based on common radiographic appearance types. Two clusters showed typical findings of COVID-19, with two other clusters showing typical findings related to bacterial pneumonia. Notably, there is one cluster that showed bilateral diffuse ground-glass opacities (GGOs) in the central and peripheral lungs and was considered to be a key factor for severity classification. The proposed method achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia patients with 95% reported for severity classification. The CT quantitative parameters represented by the values of cluster 8 were correlated with existing laboratory data and clinical parameters. Conclusion: Deep chest CT analysis with constructed lesion clusters revealed well-known COVID-19 CT manifestations comparable to manual CT analysis. The constructed histogram features improved accuracy for both diseases and severity classification, and showed correlations with laboratory data and clinical parameters. The constructed histogram features can provide guidance for improved analysis and treatment of COVID-19.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0