메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
류진아 (숙명여자대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제1호
발행연도
2021.1
수록면
25 - 31 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We present a GAN-based framework for producing illustrative sketches from game scenes. This framework includes a relaxed cycle consistency loss (RCCL) module that estimates the difference between the edges of game scenes and resulting sketches extracted by the holistically-nested edge detection (HED) scheme. We compare the two edges using the learned perceptual image patch similarity (LPIPS) metric to focus on clear line representations. We also employ an attention map that focuses on semantic areas to identify areas that need to be intensively transformed. Our framework consists of a style extraction module, a generator module, a discriminator module, and a relaxed cycle consistency loss module. First, We extract the styles of illustrative sketch images using the style extraction module. Next, we generate illustrative sketches via style attention maps extracted from game scenes using the generator module. We then process the generated sketch images to the discriminator module to obtain the probability that the generated sketch satisfies the quality of illustrative sketch. We also apply RCCL to maintain the structure of the game scenes in the generated illustrative sketches. We demonstrate the superiority of our framework by illustrative sketches from various game scenes.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0