메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이혜문 (중앙대학교) 이원형 (중앙대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제32권 제1호
발행연도
2019.1
수록면
51 - 59 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
필기 인식은 사람이 작성한 문서나 종이에 쓴 글자, 사진에 보이는 글자 등을 인식하는 기술이다. 대표적인 기술로는 OCR과 온라인 필기인식 기술이 있으며 OCR은 정자로 또박또박 쓴 글씨 인식률은 높지만 그렇지 않는 경우에는 인식률이 낮다. 온라인 필기인식 기술은 필기 입력순서와 사람의 필체의 차이에 따라 인식률이 확연하게 달랐다. 본 논문에서는 이러한 단점을 보완하고자 딥러닝을 이용하여 필기체 인식 시스템을 제안하 고자 한다. 본 논문에서는 신경망 알고리즘 중 Convolutional Neural Network와 EMNIST 데이터 세트를 사용 하여 학습 데이터를 설계하였고 Unity3D 게임엔진을 이용하여 전체적인 시스템을 구성하였다. 또한 본 논문에 서는 CPU와 GPU 성능이 학습 결과에 영향을 미치는지 알아보기 위해 성능을 비교분석을 하였고, loss 값과 accuracy 결과에 큰 차이는 없었지만 학습 속도에는 최대 30배 정도 속도 차이가 났다. 마지막으로 실험을 통 해 시스템 인식결과를 분석하였고, 문자와 숫자가 유사한 O, q, l과 같은 알파벳이나, 실험자가 글자를 다른 알파벳과 유사하게 보이게 필기하면 인식률이 낮았다. 본 논문에서 제안하는 시스템은 게임엔진을 사용하여 인공지능 시스템을 개발했기 때문에 프로세스 절차가 간략해졌고 호환성도 좋아졌다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0