메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Bing Chen (University of Science and Technology Beijing) Shiqing Li (University of Science and Technology Beijing) Xiaolei Tang (University of Science and Technology Beijing) Lijie Zhang (China North Research Institute)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.28 No.1
발행연도
2021.1
수록면
29 - 41 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To improve the energy conversion efficiency and working frequency bandwidth of a single frequency piezoelectric vibration energy harvester, a new type of hybrid vibration energy harvester is developed which is combined with the mechanism of piezoelectric and electromagnetic energy conversion. The system comprises of a PZT cantilever beam, an elastic suspended magnetic mass, a magnet block attached to the end of the cantilever beam and a resonator. The addition of resonator can not only increase the mode, but also adjust the frequency of harvester flexibly. Nonlinear magnetic force of magnet block not only broadens the frequency band and improves the output performance of the system, but also changes the resonant frequency to make the harvester have better adjustable performance. On this basis, an improved electromechanical coupled analytical model of continuum is proposed which can be solved by the Runge-Kutta algorithm and the influence of different factors (the mass and spring stiffness of the resonator, as well as the electromechanical coupling coefficient, electromagnetic coupling coefficient, magnet mass and magnetic flux) on the output are analyzed. According to the prototype of the vibration energy harvester developed, an experimental system was built. The performance of the independent and hybrid energy harvesters is evaluated by experimental and analytical methods. The peak output voltage of the piezoelectric part was about 4 times that of the electromagnetic part. The peak output current of the electromagnetic part is about 30 times that of the piezoelectric part. The study results show that the proposed new hybrid vibration energy harvester can achieve a wider frequency range and multimodal vibration energy harvesting. In addition, the bandwidth and power of the harvester can be dynamically adjusted by changing the resonator or electromechanical coupling coefficient, and the bandwidth of the harvester can also be adjusted by changing the quality and characteristics of the magnet.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0