메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hyo Seon Park (Yonsei University) Byung Kwan Oh (Kyungil University) Branko Glisic (Princeton University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.6
발행연도
2021.1
수록면
903 - 916 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study presents a damage detection method based on modal responses for building structures using convolutional neural networks (CNNs). The modal responses used in the method are obtained from the dynamic responses, which are measured in a building structure under ambient excitations; these are then transformed to a modal participation ratio (MPR) value for a measuring point and mode. As modal responses vary after damages in the structures, the MPR for a specific location and mode also changes. Thus, in this study, MPR variations, which can be obtained by comparing the MPRs of damaged and healthy structures, are utilized for damage detection without the need for identification of modal parameters. Since MPRs are derived for the number of measuring points (<i>N</i>) in the structure as well as the same number of modes (<i>N</i>), the MPRs and MPR variations can be arranged as an <i>N</i> × <i>N</i> matrix. This low-dimensional MPR variations set is used as the input map of the presented CNN architecture and information about damage locations and severities of the target structure is set as the output of the CNN. The presented CNN is trained for establishing the relationship between MPR variations and damage information and utilized to estimate the damage. The presented damage detection method is applied to numerical examples for two multiple degrees of freedoms and a three-dimensional ASCE benchmark numerical model. Training datasets created from damage scenarios assuming changes in the stiffness are used to train the CNN and the performance of this CNN is verified. Finally, this study examines how variations in the operator size and number of layers in the CNN architecture affect the damage detection performance of CNNs.

목차

등록된 정보가 없습니다.

참고문헌 (44)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0