메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shahin Lale Arefi (University of Mohaghegh Ardabili) Amin Gholizad (University of Mohaghegh Ardabili) Seyed Mohammad Seyedpoor (Shomal University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.25 No.1
발행연도
2020.1
수록면
1 - 22 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The modal strain energy method is one of the efficient methods for detecting damage in the structures. Due to existing some limitations in real-world structures, sensors can only be located on a limited number of degrees of freedom (DOFs) of a structure. Therefore, the mode shape values in all DOFs of structures cannot be measured. In this paper, a modified modal strain energy based index (MMSEBI) is introduced to locate damaged elements of structures when a limited number of sensors are used. The proposed MMSEBI is based on the reconstruction of mode shapes using Improved Reduction System (IRS) method. Therefore, in the first step by employing IRS method, mode shapes in slave degrees of freedom are estimated by those of master degrees of freedom. In the second step, the proposed MMSEBI is used to located damage elements. In order to evaluate the efficiency of the proposed method, two numerical examples are considered under different damage patterns considering the measurement noise. Moreover, the universal threshold based on statistical hypothesis testing principles is applied to damage index values. The results show the effectiveness of the proposed MMSEBI for the structural damage localization when comparing with the available damage index named MESBI. The results demonstrate that the presented method can be used as a practical strategy for structural damage identification, especially when a limited number of sensors are installed on the structure. Finally, the combination of MMSEBI and IRS method can provide a reliable tool to identify the location of damage accurately.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0