메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ahmed M. Tahwia (Mansoura University) Ashraf Heniegal (Suez University) Mohamed S. Elgamal (Mansoura University) Bassam A. Tayeh (Islamic University of Gaza)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.27 No.1
발행연도
2021.1
수록면
21 - 28 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The Artificial Neural Network (ANN) is a system, which is utilized for solving complicated problems by using nonlinear equations. This study aims to investigate compressive strength, rebound hammer number (RN), and ultrasonic pulse velocity (UPV) of sustainable concrete containing various amounts of fly ash, silica fume, and blast furnace slag (BFS). In this study, the artificial neural network technique connects a nonlinear phenomenon and the intrinsic properties of sustainable concrete, which establishes relationships between them in a model. To this end, a total of 645 data sets were collected for the concrete mixtures from previously published papers at different curing times and test ages at 3, 7, 28, 90, 180 days to propose a model of nine inputs and three outputs. The ANN model’s statistical parameter R2 is 0.99 of the training, validation, and test steps, which showed that the proposed model provided good prediction of compressive strength, RN, and UPV of sustainable concrete with the addition of cement.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0