메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
S. Erfani (Amirkabir University of Technology) A. Vakili (Amirkabir University of Technology) V. Akrami (University of Mohaghegh Ardabili)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.39 No.2
발행연도
2021.1
수록면
171 - 188 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software “Abaqus” and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0