메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ali Akram (Universiti Teknologi PETRONAS) Zahiraniza Mustaffa (Universiti Teknologi PETRONAS) Thar M. Badri Albarody (Universiti Teknologi PETRONAS)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.35 No.2
발행연도
2020.1
수록면
171 - 186 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper aims at providing insights on the use of thermosetting liner for the repair of offshore pipelines exposed to corrosion and leakage. The work which covers both experimental and numerical approaches were aspired due to the high cost of repair for pipelines, limitations of thermoplastic material and limited study of reinforced thermosetting liner. The experiment involves a destruction test called the burst test, carried out on an API 5L X42 carbon steel pipe under four case studies, namely (i) intact pipe, (ii) pipe with corrosion defect, (iii) pipe with corrosion defect and repaired with thermosetting liner and (iv) pipe with leakage and repaired with thermosetting liner. The numerical simulation was developed to first validate the experimental results and later to optimize the design of the thermosetting liner in terms of the number of layers required to restore the original strength of the pipe. The burst test shows an improvement in 23% of the burst capacity for the pipe with corrosion defects, after being repaired with a three-layer thermosetting liner. The parametric studies conducted showed that with an addition of thermosetting layers, the burst capacity improves by an average of 1.85 MPa. In conclusions, the improvement in strength can be further increased with increasing thickness of the thermosetting liner. The thermosetting liner was also determined to fail first inside the host pipe.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0