메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lakshmi Krishansamy (CSIR-Structural Engineering Research Centre) Rama Mohan Rao Arumulla (CSIR-Structural Engineering Research Centre)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.72 No.6
발행연도
2019.1
수록면
689 - 712 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

목차

등록된 정보가 없습니다.

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0