메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kiwoon Kwon (Dongguk University Seoul)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.9 No.2
발행연도
2019.1
수록면
233 - 243 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the Compton camera was fi rst introduced, various types of conical Radon transforms have been examined. Here, wederive the inversion formula for the conical Radon transform, where the cone of integration moves along a curve in threedimensionalspace such as a helix. Along this three-dimensional curve, a detailed inversion formula for helical movementwill be treated for Compton imaging in this paper. The inversion formula includes Hilbert transform and Radon transform. For the inversion of Compton imaging with helical movement, it is necessary to invert Hilbert transform with respect tothe inner product between the vertex and the central axis of the cone of the Compton camera. However, the inner productfunction is not monotone. Thus, we should replace the Hilbert transform by the Riemann–Stieltjes integral over a certainmonotone function related with the inner product function. We represent the Riemann–Stieltjes integral as a conventionalRiemann integral over a countable union of disjoint intervals, whose end points can be computed using the Newton method. For the inversion of Radon transform, three dimensional fi ltered backprojection is used. For the numerical implementation,we analytically compute the Hilbert transform and Radon transform of the characteristic function of fi nite balls. Numericaltest is given, when the density function is given by a characteristic function of a ball or three overlapping balls.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0