메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박재순 (대구가톨릭대학교) 여도엽 (한국원자력연구원) 최유락 (한국원자력연구원) 이종혁 (대구가톨릭대학교) 배지훈 (대구가톨릭대학교)
저널정보
한국정보기술학회 Proceedings of KIIT Conference 한국정보기술학회 2021년도 추계종합학술대회 및 대학생논문경진대회
발행연도
2021.11
수록면
431 - 435 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 플랜트 배관계의 저전력 센싱 모듈에서 수집한 미세누출에 대한 데이터를 이용하여 딥러닝 기반의 경량화된 누출진단 학습모델을 제안하고자 한다. 초기 건설 시에 설치되었던 플랜트 배관들의 노후화가 진행됨에 따라 배관계의 조기 누출탐지 요구가 증대되고 있지만, 플랜트에서 발생되는 기계잡음과 소음으로 인해 미세누출의 진위 여부를 판별하는 데에 어려움이 있다. 따라서 본 연구에서는 학습 데이터가 작고 기계잡음이 존재하는 상황에서 실제 누출 신호에 대한 이상감지를 수행하기 위해 전이학습 기반의 미세누출 판별 딥러닝 모델을 제안한다. 본 연구의 결과에 따르면 제안모델의 정확도 성능이 기존 신경망 기반의 모델들 보다 더 우수한 미세누출 판별 정확도를 제공할 수 있음을 실험적으로 관찰할 수 있었다. 또한 모델 경량화 작업을 수행한 후 라즈베리파이와 같은 저사양 하드웨어에 탑재하여 정상적인 기능 동작과 빠른 추론 성능도 검증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 미세누출 지능형 진단 딥러닝 모델 설계 및 성능 실험 결과
Ⅲ. 미세누출 지능형 진단 경량화 모델 구현 및 기능 실험 결과
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-002163460