메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
변정훈 (충북대학교) 박상준 (육군사관학교 전자공학과) 윤준혁 (육군사관학교) 김용철 (육군사관학교) 이원우 (육군사관학교) 조오현 (충북대학교) 주태환 (국방과학연구소)
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제11권 제1호
발행연도
2021.1
수록면
12 - 19 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
원활한 작전 수행을 통한 국방력의 강화를 위해 전술네트워크의 기능은 필수적이다. 전시 상황에서 다양한 전술, 전략은 수많은 정보들을 근거로 한다. 이를 위해 정찰기를 비롯한 다양한 정보 수집 장치 및 자원들이 방대한 양의 정보 수집을 위해 사용되고, 이들 대다수는 전술네트워크를 통해 정보를 전달한다. 채널의 사용 여부를 판단하여 상황에 따라 경쟁 기반으로 채널에 접속을 하는 국방전술네트워크 환경에서, 매우 높은 이동성을 갖는 정찰기 등 고속 이동 노드는 불필요한 채널 점유로 인하여 잠재적인 성능 열화 문제가 발생할 수 있다. 본 논문에서는 채널 예약 시점을 정하는 경쟁 윈도우(Contention Window)의 크기를 경험적으로 학습시켜 네트워크 처리량을 증가시키는 Learning-Backoff 방식의 무전 채널 접속 방법을 제안한다. 제안하는 방법은 고속 이동 노드의 수가 많아짐에 따라 더욱 좋은 성능을 보이고 있으며, 정찰기 4대가 운영되는 특정 작전 시나리오에 적용하였을 경우 처리량이 최대 25% 증가한다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0