메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김현돈 (한국폴리텍대학)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제15권 제5호
발행연도
2020.1
수록면
227 - 234 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we propose wav-U-Net to improve speech enhancement in heavy noisy environments, and it has implemented three principal techniques. First, as input data, we use 128 modified Mel-scale filter banks which can reduce computational burden instead of 512 frequency bins. Mel-scale aims to mimic the non-linear human ear perception of sound by being more discriminative at lower frequencies and less discriminative at higher frequencies. Therefore, Mel-scale is the suitable feature considering both performance and computing power because our proposed network focuses on speech signals. Second, we add a simple ResNet as pre-processing that helps our proposed network make estimated speech signals clear and suppress high-frequency noises. Finally, the proposed U-Net model shows significant performance regardless of the kinds of noise. Especially, despite using a single channel, we confirmed that it can well deal with non-stationary noises whose frequency properties are dynamically changed, and it is possible to estimate speech signals from noisy speech signals even in extremely noisy environments where noises are much lauder than speech (less than SNR 0dB). The performance on our proposed wav-U-Net was improved by about 200% on SDR and 460% on NSDR compared to the conventional Jansson’s wav-U-Net. Also, it was confirmed that the processing time of out wav-U-Net with 128 modified Mel-scale filter banks was about 2.7 times faster than the common wav-U-Net with 512 frequency bins as input values.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0