메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임도빈 (서울대학교) 제시 캠벨 (인천대학교)
저널정보
서울대학교 행정대학원 The Korean Journal of Policy Studies The Korean Journal of Policy Studies 제35권 제3호
발행연도
2020.1
수록면
119 - 139 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A rapid and comprehensive policy response allowed South Korea to contain an aggressive outbreak of COVID-19 without resorting to the harsh lockdown measures necessitated in other countries. However, while the general content of Korea’s response is now fairly well-known, what has received less attention is the unique governance context in which the country’s containment strategy was formulated and implemented. This article focuses on 3 administrative elements of Korea’s pandemic containment approach. First, the central government effectively coordinated the efforts of sub-national governments to ensure critical resource availability and deliver a response calibrated to the situation of each locale. Second, ongoing inter-sectoral collaboration was used to marshal non-government resources in both the biotech and medical sectors which in turn enabled core features of Korea’s policy, including a rapid acceleration of testing. Third, a timely, accessible, and technocratic communications strategy, led by public health experts and leveraging the country’s highly developed information and communications technology systems, facilitated citizen trust and ultimately voluntary compliance with public health directives. Although the Korean approach offers a number of lessons for other countries, by ignoring the specific administrative and social characteristics that are relevant to its implementation, policymakers risk overestimating its inter-contextual portability. By thoroughly contextualizing Korea’s virus containment strategy, this article seeks to minimize this risk.

목차

등록된 정보가 없습니다.

참고문헌 (60)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0