메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강정기 (진영중학교)
저널정보
한국학교수학회 한국학교수학회논문집 한국학교수학회논문집 제24권 제2호
발행연도
2021.1
수록면
173 - 190 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 Newton의 <Principia>의 핵심으로 일컬어지는 역제곱 법칙의 증명을 기하학적 극한과 관련하여 분석하고, 이를 수학교육에 활용하는 방안과 관련한 교육적 시사점을 제공하고자 하였다. Newton은 무한소에 대한 논쟁을 의식하여 전통적인 Euclid의 기하 방식으로 역학 문제를 해결하였다. Newton은 힘, 시간, 관성 궤도 이탈 정도 등을 기하 선분으로 표현함으로써 역학을 기하의 차원에 포함시키는 결과를 이뤄냈다. Newton은 특히 포물선 근사, 다각형 근사, 선분의 비의 극한이라는 기하학적 극한을 도입함으로써 Euclid 기하를 역학을 아우르는 새로운 차원으로 발전시킬 수 있었다. 이러한 분석을 바탕으로 Newton의 기하학적 극한을 수학의 유용성을 보여주는 도구로 활용, 곡선 면적은 정적분이라는 통념을 깨는 수단으로 활용할 것을 제안하였다. 더불어 학교수학에서 기하학적 극한의 바람직한 활용을 돕기 위해서는 미시 세계에서의 동등성 확대 강조, 발견술로서 활용하게끔 유도하는 질문 활용, 미시 세계에서 선분의 동등성 파악에는 비의 접근이 유용하다는 인식을 돕는 과정이 필요할 것이라는 교육적 시사점을 제안하였다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0