메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hua Meng (Longwood University Farmville VA USA) Jamie L. Grigsby (Missouri State University) Cesar Zamudio (Virginia Commonwealth University)
저널정보
한국마케팅과학회 Journal of Global Fashion Marketing Journal of Global Fashion Marketing 제11권 제4호
발행연도
2020.1
수록면
343 - 360 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Reactions to a scent are both cognitive and neurobiological, and impact fragrance evaluation along two key factors. One is gender, due to information processing differences among men and women. The other one is uncertainty, which firms induce via sales strategies by either spritzing a fragrance before revealing brand and price information, or by showcasing the fragrance by revealing brand and price prior to smelling. Surprisingly, how and when to implement these strategies remains unexplored. This research addresses this gap. It conceptualizes a new mechanism by applying spreading activation theory to the context of the neurobiological scent-processing pathway, proposing that scent, as the prime node in the associative network, automatically activates six attributes: scent characteristics, personal memories, qualitative attributes, social aspects, valence, and marketing-related attributes. We then empirically investigate how these attributes impact product evaluation. A multi-methods approach employing electronic word-of-mouth analysis finds support for the activation of the six fragrance attributes. Two experiments also support their presence, and reveal that men and women evaluate fragrances differently because their information processing is contingent on uncertainty. Managers can nudge the attribute activation process and maximize fragrance evaluation by implementing a gender-based sales strategy, relying on spritzing for men and showcasing for women.

목차

등록된 정보가 없습니다.

참고문헌 (55)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0