메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhuonan He (Nanchang University) 지영용 (한국원자력연구원) 김창종 (한국원자력연구원) 이완로 (한국원자력연구원) 강문자 (한국원자력연구원)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제24권 제4호
발행연도
2020.1
수록면
179 - 195 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, unsupervised deep learning methods have shown great potential in image processing. Compared with a large-amount demand for paired training data of supervised methods with a specific task, unsupervised methods can learn a universal and explicit prior information on data distribution and integrate it into the reconstruction process. Therefore, it can be used in various image reconstruction environments without showing degraded performance. The importance of unsupervised learning in MRI reconstruction appears to be growing. Nevertheless, the establishment of prior formulation in unsupervised deep learning varies a lot depending on mathematical approximation and network architectures. In this work, we summarized basic concepts of unsupervised deep learning comprehensively and compared performances of several state-of-the-art unsupervised learning methods for MRI reconstruction.

목차

등록된 정보가 없습니다.

참고문헌 (71)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0