메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
곽지혜 (서울대학교) 김지혜 (서울대학교) 전상민 (서울대학교) 황순호 (서울대학교) 이성학 (Integrated Watershed Management Institute) 이재남 (한국농어촌공사 농어촌연구원) 강문성 (서울대학교)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제62권 제6호
발행연도
2020.1
수록면
85 - 95 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However,due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods’ volume by using climatechange scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distributionand new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying themodified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climatechange was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic ModelingSystem) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volumeincreased by 627 m3/s (15%) and 523 m3/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 m3/s (3.76%)on a 200-yr frequency and 171 m3/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 m3/s (0.30%)on a 200-yr frequency and 8.5 m3/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made theflood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0