메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tsiu-Kwen Lee (National Taiwan University) Yu Li (Southwest University) Gaohua Tang (Beibu Gulf University)
저널정보
대한수학회 대한수학회보 대한수학회보 제58권 제3호
발행연도
2021.1
수록면
659 - 668 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a semiprime ring with maximal right ring of quotients $Q_{mr}(R)$, and let $n_1, n_2,\ldots ,n_k$ be $k$ fixed positive integers. Suppose that $R$ is $\big(n_1+ n_2+\cdots+n_k\big)!$-torsion free, and that $f\colon \rho\to Q_{mr}(R)$ is an additive map, where $\rho$ is a nonzero right ideal of $R$. It is proved that if $\Big[\big[\ldots [f(x), x^{n_1}],\ldots\big], x^{n_k}\Big]=0$ for all $x\in \rho$, then $\big[f(x), x\big]=0$ for all $x\in \rho$. This gives the result of Beidar et al. \cite{beidar1997} for semiprime rings. Moreover, it is also proved that if $R$ is $p$-torsion, where $p$ is a prime integer with $p=\sum_{i=1}^kn_i$, and if $f\colon R\to Q_{mr}(R)$ is an additive map satisfying $\Big[\big[\ldots [f(x), x^{n_1}],\ldots\big], x^{n_k}\Big]=0$ for all $x\in R$, then $\big[f(x), x\big]=0$ for all $x\in R$.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0