메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Miaomiao Liu (Northeast Petroleum University) Qing-Cui Hu (Northeast Petroleum University) Jingfeng Guo (Yanshan University) Jing Chen (Yanshan University)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제17권 제2호
발행연도
2021.1
수록면
213 - 226 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Given that most of the link prediction algorithms for signed social networks can only complete sign prediction,a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectivelyby using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the totalsimilarity of the node pair can be obtained by combining them. Its absolute value measures the possibility ofthe two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectivenessand correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are alsocarried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, andPSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like areaunder the curve (AUC), Precision, improved AUC′, improved Accuracy′, and so on. Results show that theproposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy ishigher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy andcomputational complexity.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0