메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Aksanat PANZABEKOVA (Institute of Economics of the Ministry Education) Anel A. Kireyeva (Institute of Economics of the Ministry of Education and Science of the Republic of Kazakhstan) Azimkhan A. SATYBADIN (Kazakh National University alFarabi) Nursymbat S.SABYR (L.N. Gumilyov Eurasian National University)
저널정보
한국유통과학회 유통과학연구 유통과학연구 제18권 제12호
발행연도
2020.1
수록면
67 - 77 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Based on the author's adapted invariant choice, this study is to present the methodology and the calculation of the integral index of the digital component of the quality of life. By analyzing the digital indexes, the study is also to discuss distribution of ICT and the digital quality of life of the population of Kazakhstan and its regions. Research design, data, methodology: In this research, the method of calculation of integral assessment of the indicator was used, which indicates index constructs. The study analyzed objective secondary data for the period 2017-2019, which was the database from official websites of the Committee on Statistics of the Republic of Kazakhstan. Results: The study produced an integral code for assessing digital components of living standards of the population, consisting of five groups sub-indexes. Conclusions: Based on the provided analyses, we can confirm the existence of a significant difference of all the indicators of digital living standards of the population between the two leading cities: Almaty city and Nur-Sultan city. Furthermore we can deduce the differences of the examined indexes for other regions of Kazakhstan. Despite the rapid adoption of digital technologies, Kazakhstan still has significant digital gaps among cities indicating regional differences in the speed of implementation and distribution of digital technologies.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0