메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이기현 (아주대학교 신산업 융합기술연구센터) 곽경일 (아주대학교 신산업 융합기술연구센터) 채우리 (아주대학교) 고진덕 (아주대학교 신산업 융합기술연구센터) 이주연 (아주대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제18권 제12호
발행연도
2020.1
수록면
267 - 278 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
에너지 패러다임이 격변하는 시점에서 ESS는 전력부족 및 전력수요관리의 해소와 재생에너지의 증진에 필수적인 요건이다. 이에 본 논문에서는 부하 및 태양광 발전 예측량을 통하여 비용효과적인 ESS Peak-Shaving 운영방안을 제안한다. ESS 운영방안을 위해 통계적 척도인 RMS을 통해 부하 및 태양광 발전 예측하였으며 예측된 부하 및 태양광 발전량을 통해 한 시간 단위의 목표 부하 절감량 Guide-line을 설정하였다. 대상 수용가의 1년 실데이터를 활용한 부하 및 태양광 발전 예측 시뮬레이션으로 2019년 5월 6일 ~ 10일의 부하 및 태양광 발전량을 예측 하였으며 시간별 Guide-line을 설정하였다. 부하 예측 평균오차율은 7.12%였으며, 태양광 발전량 예측 평균오차율은 10.57%를 나타냈다. ESS 운영방안을 통한 시간별 Guide-line 제시를 통해 수용가의 Peak-shaving 최대화에 기여하였음을 확인하였다. 본 논문의 결과를 통해 태양광과 연계하여 화석에너지로 발생하는 환경적인 영향을 최소화하며 신재생에너지를 최대 활용하여 에너지 문제를 줄일 수 있다고 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0