메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최상기 (선문대학교 통합의학과 박사수료) 이거룡 (선문대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제18권 제8호
발행연도
2020.1
수록면
231 - 242 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.

목차

등록된 정보가 없습니다.

참고문헌 (59)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0