메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정훈 (Grand ICT 연구센터) 권혁철 (부산대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제24권 제10호
발행연도
2021.10
수록면
1,391 - 1,402 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 문맥의존 철자오류 교정
4. 이중 판별자 생성적 적대 신경망
5. 실험 및 평가
6. 결론 및 향후 연구
REFERENCE

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0