메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第37卷 第9號(通卷 第395號)
발행연도
2021.9
수록면
137 - 144 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Building energy demand currently accounts for 30% of the total energy consumption, which has a great influence on the planning and operation of the energy market managed by energy suppliers. Furthermore, its importance has increased significantly with the advent of smart grid. Variables affecting building energy consumption include identified various environmental conditions that cast sophisticated effect on the energy performance of the buildings. However, due to a large number of potentially associated environmental variables, it is needed to extract embedded features so as to improve building energy prediction capability through adopting Principle Component Analysis which could reduce input data dimension. The primary objective of this study is to propose a high-precision building energy demand prediction model by reducing the dimensionality through PCA. Machine learning is implemented by using LSTM model, and prediction accuracy and performance are verified through R², RMSE, MAE, as well as computation time. The improvement ratio showed 14.93% increase when dimension-reduced dataset and normalized raw data were combined in comparison with the predicted case tested by using only normalized raw data. This study could support optimum building energy operation planning and design by promoting the creation and implementation of energy-efficient smart grid systems in the future.

목차

Abstract
1. 서론
2. 기계학습 적용을 위한 예비적 고찰
3. 연구의 방법
4. 실험 결과 및 분석
5. 결론
REFERENCES

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0