메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nam, Miwoo (Seokyeong University)
저널정보
한국전시산업융합연구원 한국과학예술융합학회 한국과학예술융합학회 Vol.39 No.4
발행연도
2021.9
수록면
111 - 129 (19page)
DOI
10.17548/ksaf.2021.09.30.111

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study analyzed keywords on skin collected by social network such as Naver’ & Daum’s Jisik-in, cafes, blogs, etc. from Jan. 2017 to 2019 Dec by applying big data analysis. The results were as follows. First, from the analysis of text mining, the keywords that appeared most in 2017, 2018 and 2019 were acne. Second, TF-IDF did not differ significantly by year. The skin was the most important keyword. Third, as a result of N-gram analysis, it was found that in 2017 or 2018, ‘skincare shop’-‘characteristics’ and in 2019, ‘proper skin care’-‘doing’ was found. Fourth, as a result of semantic network analysis, men’s skincare, special occasions’ skincare, acne & pore, hypoallergic skincare were the main factors in 2017. In 2018, acne, prickle & dryness, atopy, pore, elasticity, sebum, anti-aging and sebum, and in 2019, home care, customized care, anti-aging and atopy were the main keywords. From the results, the biggest concerns that Koreans have been acne, atopy, dryness, pores, and sebum.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Theoretical Background
Ⅲ. Methods and Methodology
Ⅳ. Results and Discussion
Ⅴ. Conclusion and Discussion
Reference

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0