메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amela Greksa (University of Novi Sad) Jasna Grabić (University of Novi Sad) Boško Blagojević (University of Novi Sad)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제27권 제4호
발행연도
2022.8
수록면
106 - 117 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Bioretention systems are globally the most accepted Low Impact Development (LID) practices. In this study, we simulated bioretention performances for four locations in the city of Novi Sad, with RECARGA modelling software. The primary objective of the research was to evaluate potential of bioretention systems for runoff reduction. The second research objective was to suggest RECARGA model as a support for future decision-making processes. Analysis of the sensitivity of bioretention design parameters on bioretention performances, involved variations related to different sizes of bioretention systems, application of an underdrain, the difference in soil texture and changes in the depth of each individual bioretention layer. The total average volume of retained runoff by bioretention systems ranged from 43.33 to 93.84%, while some single simulation results were 100%. Among all tested design parameters, bioretention size and the native soil hydraulic conductivity have shown the greatest influence on the runoff reduction rate. This study provides information about the developing a site-specific bioretention solutions needed to prevent urban flooding in the area of research where this systems are still not sufficiently applied in practice. The obtained methodology can be applied for other locations and also it can be extended to other cities with similar urban flooding problems.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results of Runned Simulations
4. Discussion
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0