메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Joshua Evan Arijanto (Bina Nusantara University) Steven Geraldy (Bina Nusantara University) Cyrena Tania (Bina Nusantara University) Derwin Suhartono (Bina Nusantara University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.21 No.3
발행연도
2021.9
수록면
310 - 316 (7page)
DOI
10.5391/IJFIS.2021.21.3.310

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Personality traits can be inferred from a person’s behavioral patterns. One example is when writing posts on social media. Extracting information about individual personalities can yield enormous benefits for various applications such as recommendation systems, marketing, or hiring employees. The objective of this research is to build a personality prediction system that uses English texts from Twitter as a dataset to predict personality traits. This research uses the Big Five personality traits theory to analyze personality traits, which consist of openness, conscientiousness, extraversion, agreeableness, and neuroticism. Several classifiers were used in this research, such as support vector machine, convolutional neural network, and variants of bidirectional encoder representations from transformers (BERT). To improve the performance, we implemented several feature extraction techniques, such as N-gram, linguistic inquiry and word count (LIWC), word embedding, and data augmentation. The best results were obtained by fine-tuning the BERT model and using it as the main classifier of the personality prediction system. We conclude that the BERT performance could be improved by using individual tweets instead of concatenated ones.

목차

Abstract
1. Introduction
2. Related Work
3. Dataset
4. Methodology
5. Results
6. Conclusion
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0