메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
방연준 (서울과학기술대학교) 이의진 (서울과학기술대학교) 박주형 (서울과학기술대학교) 강병근 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2021 하계학술대회
발행연도
2021.6
수록면
19 - 22 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존 영상 콘텐츠에 새로운 물체를 삽입하는 등의 영상 재구성 기술은 새로운 게임, 가상현실, 증강현실 콘텐츠를 생성하거나 인공신경망 학습을 위한 데이터 증대를 위해 사용될 수 있다. 하지만, 기존 기술은 컴퓨터 그래픽스, 사람에 의한 수동적인 영상 편집에 의존하고 있어 금전적/시간적 비용이 높다. 이에 본 연구에서는 인공지능 신경망을 활용하여 낮은 비용으로 영상을 재구성하는 기술을 소개하고자 한다. 제안하는 방법은 기존 콘텐츠와 삽입하고자 하는 객체를 포함하는 영상이 주어졌을 때, 객체 세그먼테이션 네트워크를 활용하여 입력 영상에서 객체를 분리하고, 스타일 변환 네트워크를 활용하여 입력 영상을 스타일 변환한 후, 사용자 입력과 두 네트워크의 결과를 활용하여 기존 콘텐츠에 새로운 객체를 삽입하는 것이다. 실험에서는 기존 콘텐츠는 온라인 영상을 활용하였으며 삽입 객체를 포함한 영상은 ImageNet 영상 분류 데이터 세트를 활용하였다. 실험을 통해 제안한 방법을 활용하면 기존 콘텐츠와 잘 어우러지게끔 객체를 삽입할 수 있음을 보인다.

목차

요약
1. 서론
2. 관련 연구
3. 방법
4. 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0