메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이혜선 (KEPRI) 이병성 (KEPRI)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제8호
발행연도
2021.8
수록면
1,215 - 1,219 (5page)
DOI
10.5370/KIEE.2021.70.8.1215

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Failure of power facilities causes huge losses and inconvenience to customers. Therefore, Power system companies investing to the facilities for stable power supply. It called ‘Power System Asset Management’ and this means predicting the status of power facilities using data from assets (operation, maintenance, failure, etc.) and establishing an optimal investment plan to improve management efficiency. In the case of power distribution facilities in Korea, old facilities and high risk facilities are replaced through diagnosis of power distribution facilities and evaluation of asset health to minimize customer damage to and reduce investment costs. For Asset status prediction, it need variable input data which affect power facilities and analysis of the impact on power facilities is also essential. However, it is not sufficient for research that comprehensively analyzes the assessment factors of distribution facilities" asset health index and the effects of the facilities to form an health index table. Therefore, in this paper, we study methods for efficient implementation of asset health assessment schemes. Based on big data analysis and machine learning algorithms, we developed a function to automatically extract and assign scores to evaluation items that are highly related to the lifespan of the facility.

목차

Abstract
1. 서론
2. 본론
5. 결론
Reference

참고문헌 (2)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-001935312