메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김철호 (고려대) 변지욱 (고려대) 고재현 (고려대) 허연숙 (고려대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第37卷 第7號(通卷 第393號)
발행연도
2021.7
수록면
157 - 165 (9page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This study developed a series of probabilistic statistical models for electricity demand prediction of residential communities. The series of probabilistic models were developed to reflect individual variations in the electricity demand depending on household characteristics and temporal variability in the pattern of hourly electricity use. We used the hourly electricity data, including plug-in and lighting energy use, from 23 households selected from the public data of the Korea Energy Agency. The prediction model consists of four models to capture variability in the electiricity demand at different indiviual and time scales. Models 1 and 2 are blinear regression models that predict the annual average electricity load depending on the household characteristics and variation in the daily electricity load, respectively. Models 3 and 4 are multivariate normal distribution probability density functions that generate average hourly electricity load profile and temporal variations from the average profile, respectively. The results demonstrarate that the series of probabilistic models sufficiently reflect actual individual and temporal variations.

목차

Abstract
1. 서론
2. 연구 방법
3. 확률적 통계모델 개발
4. 확률적 전력요구량 프로필 적용 결과
5. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-540-001878409