메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Cemal Aktürk (Gaziantep Islam Science and Technology University)
저널정보
인하대학교 정석물류통상연구원 Journal of International Logistics and Trade Journal of International Logistics and Trade Vol.19 No.2
발행연도
2021.6
수록면
69 - 82 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Improving business processes provides companies with advantages in terms of efficiency and profitability, as well as competitiveness against other companies in the market. Companies that integrate business processes with enterprise resource planning (ERP) systems into digital platforms also have the opportunity to strengthen their weaknesses by recognizing disruptions and bottlenecks in inefficient business processes thanks to this digital transformation. Descriptive and bibliometric analyses were performed in this study for a systematic evaluation of studies on artificial intelligence (AI) in the ERP literature. The studies in which the keywords determined from the AI literature were firstly used together with ERP were investigated from the Scopus database. 837 publications meeting the search criteria were reached and a descriptive analysis of these publications was presented. Then, bibliometric analysis was performed using common author, common citation, and common keyword analysis methods for 296 publications in the article type. Tsinghua University and Obuda University have the most publications according to the results. The most commonly used AI keywords in the ERP studies were “genetic algorithm”, “fuzzy logic”, and “machine learning”. This study aims to guide future studies by providing a systematic and new perspective to researchers and experts working on ERP-AI.

목차

Abstract
1. Introduction
2. Method
3. Results
4. Conclusion and discussion
References

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-324-001850827