메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유일준 (동신대학교) 차인수 (동신대학교) 강유식 (공주대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제41권 제3호
발행연도
2021.6
수록면
167 - 182 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we use the monitoring information of the 214.5RT ammonia screw refrigeration system to show that it is possible to analyze operation patterns based power load usage, predict power usage, and save energy. We further propose an algorithm to this end. Accidents occur frequently, such as the leaking of ammonia in a recently dilapidated freezer warehouse, and management is an important point of focus because most of the power load in freezer warehouses is drawn by refrigerators. It is important to save energy and predict accidents by using the temperature information of the Meteorological Agency and taking into consideration the pressure and temperature of the refrigerator. In particular, the pressure of the refrigerator changes rapidly according to seasonal changes, and this information could be used to reduce accidents. In addition, as interest in energy saving is increasing worldwide and the reduction of carbon dioxide emissions comes into focus, research on energy saving is being conducted in various fields. In this paper, a prediction algorithm is implemented by analyzing data from the past two years among the monitoring information of a large-scale animal center refrigeration system in Incheon area using deep learning, a type of AI algorithm that has recently attracted attention, as a prediction technique. Among the deep-learning models, an algorithm is designed using RNN (Recurrent Neural Network) and LSTM (Long Short-Term Memory). The RNN and LSTM models have strengths in continuous data pattern analysis. Through this model, data are predicted and performance evaluations are conducted by comparing the power load of refrigerators that have been actually consumed recently, considering the current limiting situation and the direction to move forward.

목차

Abstract
1. 서론
2. 스크류 압축기를 사용하는 냉동설비(Refrigeration facility using screw compressor)
3. 스크류 냉동기 전류 예측 알고리즘(Screw compressor current prediction Algorithm)
4. 결론
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-563-001865781