메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이하영 (Gachon University) 정옥란 (Gachon University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제6호(통권 제207호)
발행연도
2021.6
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
코로나로 인해 건강관리에 대한 관심이 증가하고 있는 요즘, 여러 사람이 함께 이용하는 헬스장이나 공용시설을 이용하는데 어려움이 늘어남에 따라 홈 트레이닝을 하는 이들이 늘어나고 있다. 이에 본 연구에서는 홈 트레이닝 사용자들에게 좀 더 정확하고 의미 있는 운동 추천을 제공하기 위해 개인 성향 정보를 활용한 개인화된 운동 추천 알고리즘을 제안한다. 이를 위해 식습관 정보, 육체적 조건 등 개인을 나타낼 수 있는 개인 성향 정보를 사용해 k-최근접 이웃 알고리즘으로 데이터를 비만의 기준에 따라 분류하였다. 또한, 운동 데이터 셋을 운동의 레벨에 따라 등급을 구별하였으며 각 데이터 셋의 이웃 정보를 바탕으로 모델 기반 협업 필터링 방법 중 차원 축소모델인 특이값 분해 알고리즘(SVD)을 통해 사용자들에게 개인화된 운동 추천을 제공한다. 따라서 메모리 기반 협업 필터링 추천 기법의 데이터 희소성과 확장성의 문제를 해결할 수 있고, 실험을 통해 본 연구에서 제안하는 알고리즘의 정확도와 성능을 검증한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. Dataset
Ⅳ. The Proposed System
Ⅴ. Experiments
Ⅵ. Conclusions
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0