메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
손원희 (신라대학교) 정유진 (신라대학교) 김광백 (신라대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2021년도 춘계종합학술대회 논문집 제25권 제1호
발행연도
2021.5
수록면
55 - 58 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
PFCM-R 알고리즘을 적용한 기존의 반려견 진단 방법에서는 클러스터링에서 사용되는 파라미터 값을 경험적으로 설정하고 견주가 입력하는 증상들 사이에서 관련성이 낮은 증상이 필터링 되지 않아서 질병의 도출 성능을 저하시키는 원인이 된다. 따라서 본 논문에서는 노드 활성 함수를 적용하여 증상간의 관련성이 적은 증상 데이터를 제거하여 학습 데이터를 구성한 후, 연상 메모리 알고리즘에 적용하여 반려견의 질병에 대한 진단 성능을 개선시키는 하이브리드 기반 다층 학습 구조를 제안하여 반려견 진단에 적용한다. 기존의 PFCM-R 알고리즘 진단 방법과 제안된 하이브리드 다층 구조 진단 방법을 비교분석한 결과, 기존의 방법보다 제안된 방법이 입력된 증상들에 대해서 기존의 방법보다 관련성이 있는 질병 도출 성능이 23.7%가 개선되었다.

목차

요약
Ⅰ. 서론
Ⅱ. 데이터베이스 구축
Ⅲ. 하이브리드 다층 알고리즘 구성
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0