메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권현 (육군사관학교) 김용철 (육군사관학교)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제31권 제2호
발행연도
2021.4
수록면
5 - 12 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지 인식, 음성 인식, 텍스트 인식 등에서 딥러닝 모델이 좋은 성능을 보여주고 있다. 하지만 이러한 딥러닝 모델은 적대적 사례에 대하여 취약점을 갖고 있다. 적대적 사례는 원본 데이터에 최적의 노이즈를 추가하여 생성되며 사람이 보기에는 문제가 없지만 딥러닝 모델에 의해서 잘못 오인식되는 데이터를 의미한다. 적대적 사례에 대한 연구는 인공지능 분야와 보안 분야에서 관심을 받고 있으며 이미지, 음성, 텍스트 등으로 다양하게 연구가 진행 되고 있다. 이 연구에서는 적대적 사례에 대한 전반적인 기술 동향에 대해서 살펴보고자 한다.

목차

요약
Ⅰ. 서론
Ⅱ. 이미지 기반의 적대적 사례
Ⅲ. 다양한 도메인에서의 적대적 사례
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0