메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yu Min Park (Kyung Hee University) Yan Kyaw Tun (Kyung Hee University) Choong Seon Hong (Kyung Hee University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
102 - 107 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A new communications infrastructure is needed for users to experience the contents of 5G-based VR/AR in High-Speed Train (HST). Therefore, it is proposed that the Unmanned Aerial Vehicle (UAV) can be used as a communication equipment on behalf of the general Rail-side Units (RSUs) supporting the communication of the HST. To maintain reliable communications, initial deployment and trajectory considered altitude and direction of UAV are determined. Also, limited energy in UAV is an important constraint on trajectory optimization. Thus, this paper proposes initial deployment and trajectory optimization techniques for stable communication between HST and Multi- UAV with the energy constraints of UAV. This paper uses Soft Actor-Critic (SAC), one of the methods of reinforcement learning, as a way to optimize the UAV trajectory. It also uses the Support Vector Machine to carry out optimal initial deployment based on data on the maximum UAV communication distance according to the speed of HST and the energy of UAV, which is the result of trajectory optimization. As a result, this study quickly and accurately derives the optimal trajectory of Multi-UAV according to the speed of HST and the energy of UAV and also maintain stable communication by optimal initial deployment.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND PROBLEM FORMULATION
III. PROPOSED SOLUTION BASED ON MACHINE LEARNING
IV. NUMERICAL ANALYSIS AND DISCUSSION
V. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678737