메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Xu Zhang (Sun Yat-sen University) Ziqi Lin (Sun Yat-sen University) Beichen Ding (Sun Yat-sen University) Bo Gu (Sun Yat-sen University) Yu Han (Sun Yat-sen University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
55 - 60 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Device-to-device communications underlaying cellular networks have been recognized as one of the key technologies for the fifth generation (5G) cellular system to improve the spectrum efficiency and system capacity. In this paper, we investigate the potential of deep reinforcement learning (DRL) for joint subcarrier assignment and power allocation in a general form of D2D networks, where a subcarrier can be assigned to multiple D2D pairs and each D2D pair is permitted to utilize multiple subcarriers. We first formulate the above problem as a Markov decision process, and then propose a double deep Q-network (DQN)-based subcarrier-power allocation algorithm to learn the optimal policy in the absence of full instantaneous channel state information (CSI). Specifically, each D2D pair acts as a learning agent that adjusts its own subcarrier-power allocation strategy iteratively through interactions with the operating environment in a trial-and-error fashion. Simulation results confirm that the proposed algorithm achieves near optimal performance in real time. It is worth mentioning that the proposed algorithm is especially suitable for the case where the environmental dynamics is not accurate and the CSI delay cannot be ignored.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. SYSTEM MODEL
Ⅳ. DYNAMIC SUBCARRIER ASSIGNMENT AND POWER CONTROL
Ⅴ. PROPOSED ALGORITHM
Ⅵ. SIMULATION RESULTS
Ⅶ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678439