메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sejin Kim (Sookmyung Women’s University) Yoonhee Kim (Sookmyung Women’s University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
173 - 178 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The advent of GPGPU (General-Purpose Graphic Processing Unit) containers enlarges opportunities of acceleration and easy-to-use in clouds. However, there is still lack of research on utilizing efficiently GPU resource and managing multiple applications at the same time. Co-execution of applications without understanding applications’ execution characteristics may result in low performance caused by their interference problems. To solve the problem, this paper defines resource metrics that causes performance degradation when sharing resource. We calculate the degree of interference during concurrent execution of multi applications using a ML (Machine Learning) method with the metrics. The experiments show that the execution of interference aware groups improves 7% in execution time compared to non-interference aware group in overall. For a workload consisting of several applications, the overall performance was improved by 18% and 25%, respectively, when compared to SJF and random.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. MOTIVATION
Ⅲ. REALATED WORKS
Ⅳ. INTERFERENCE PREDICTION
Ⅴ. EXPERIMENT
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678353