메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Weiwei Zheng (China Academy of Electronics and Information Technology) Yanli Shen (China Academy of Electronics and Information Technology) Taoshun Xiao (China Academy of Electronics and Information Technology)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
179 - 184 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Task allocation-the problem of efficiently allocating a set of M tasks to a set of N nodes-is a fundamental issue in distributed computing systems (DCSs). The problem is particularly challenging in the presence of fail-prone nodes. In this work, we design an adaptive task (re-)allocation mechanism, named Asocial. The Asocial allows us to optimize the utilization of system resources (including computing resources and network resources) while increasing service-level fault tolerance as well as failure resilience. In addition, we propose a cooperative game model based task (re-)allocation approach for cooperation among Physical Nodes (PNs). We consider both the performance states and reliability levels of candidate PNs when deploying tasks. Specifically, we exploit failure prediction techniques to evaluate PNs’ reliability levels. As a result, we can utilize the resources efficiently and thus improve the service reliability (i.e., the probability of serving all the tasks before their delivery time). We show by means of numerical evaluations that the proposed Asocial can significantly improve service reliability, system availability as well as resource utilization. In particular, by using failure prediction result (F-measure is around 0.8), the application completion rate (ACR), the task completion rate (TCR) and the computing resource utilization (CRU) reach 85.20%, 85.67% and 78.34%, respectively. Compared with 67.30%, 70.07% and 65.79% of the initial allocation scheme, the performance achieves a significant improvement (26.60%, 22.26% and 19.08%, respectively).

목차

Abstract
I. INTRODUCTION
II. PROBLEM FORMULATION
III. METHODOLOGY
IV. EVALUATION
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678166