메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kalyanee Devi (Indian Institute of Information Technology) Rohit Tripathi (Indian Institute of Information Technology)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
197 - 202 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Online social networking platforms are used for the diffusion of information, ideas or news for various applications in our day to day life. Given a budget, the information diffusion to different entities of a network mainly depends on key entities that are initially selected as seed nodes for maximizing the influence within a network. Many studies have been done on Influence Maximization but they ignore the effect of community structure in finding influential seed nodes. This paper finds most influential seed nodes by finding smaller non-overlapping communities in a network and picking the best seed nodes in each community based on Degree centrality and Closeness centrality. This paper presents a comparative study of information diffusion through seed nodes selections by using different centrality measures and k-core decomposition method. We have used Linear Threshold (LT) diffusion Model for finding the number of activated nodes from a given set of seed nodes in one step. Our result shows that the proposed method is able to achieve maximum level of activation within a less budget as compared to five other measures. We have performed our analysis on four different datasets.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGY
IV. ANALYSIS AND RESULT
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678191