메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손수락 (가톨릭관동대학교) 정이나 (가톨릭관동대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제14권 제2호
발행연도
2021.4
수록면
134 - 139 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 여전히 운전자의 주의를 필요로 한다. 3레벨 자율주행 이후 4레벨 자율주행차량에서 가장 주목되는 부분은 차량의 안정성이다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 운전자의 부주의까지 포함하여 자율주행을 실시해야 하기 때문이다. 따라서 본 논문에서는 운전자가 부주의한 상황에서 긴급상황을 알리고 운전자의 반응을 인식하는 자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템을 제안한다. 긴급상황 알림 및 운전자 반응 확인 시스템은 긴급상황 전달 모듈을 사용하여 긴급상황을 텍스트화하여 운전자에게 음성으로 전달하며 운전자 반응 확인 모듈을 사용하여 긴급상황에 대한 운전자의 반응을 인식하고 운전 권한을 운전자에게 넘길지 결정한다. 실험 결과, 긴급상황 전달 모듈의 HMM은 RNN보다 25%, LSTM보다 42.86% 빠른 속도로 음성을 학습했다. 운전자 반응 확인 모듈의 Tacotron2는 deep voice보다 약 20ms, deep mind 보다 약 50ms 더 빨리 텍스트를 음성으로 변환했다. 따라서 긴급상황 알림 및 운전자 반응 확인 시스템은 효율적으로 신경망 모델을 학습시키고, 실시간으로 운전자의 반응을 확인할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 음성 전달 및 인식 시스템 설계
4. 실험
5. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0