메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaebeom Park (Seoul National University) Jeryang Park (Hongik University) Yongju Choi (Seoul National University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제27권 제2호
발행연도
2022.4
수록면
10 - 18 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Here, for the first time, coauthor network and cluster analysis were utilized in the environmental engineering field to identify the driving force for scientific collaboration among individuals and the formation of clusters. Papers published in South Korean domestic environmental engineering journals from 2004 to 2018 were assessed, which enabled identification of unique network characteristics that represent not only the field of study, but also the regional boundaries of the data source. Despite being limited to a single country, the study identifies network characteristics, such as scale invariance, that are typically found in other coauthor networks. Nine clusters were identified, the identity of which could be defined by two variables: research interests and author affiliations. The clusters were divided by the sameness or geographical proximity of author affiliations and problem-oriented research topics. These also describe the inter-cluster relationships, validating the notion that the two variables are the major driving force for collaboration networks. This study substantially advances the understanding of scientific collaboration in the environmental engineering field and can guide future studies, such as the role of coauthor networks in environmental engineering within or outside of regional boundaries and the role of networks in domestic publications in other fields of study.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-539-001637443