메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Oesook Lee (Ewha Womans University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제32권 제2호
발행연도
2021.3
수록면
417 - 426 (10page)
DOI
10.7465/jkdi.2021.32.2.417

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since the seminal work of Engle (1982) and Bollerslev (1986), many ARCH-type models have been suggested and examined to explain a variety of stylized facts of financial and economic time series. Various popular ARCH-type models can be expressed as ARCH(∞) models. In this paper, we study the stationarity and functional central limit theorem (FCLT) for ARCH(∞) models, because statistical inferences for ARCH(∞) sequences require the study of asymptotics of various statistics concerned. Most previous results are obtained under independent and identically distributed (i.i.d.) innovation processes. But the i.i.d. assumption on innovations substantially restricts the flexibility of the models. In addition, many authors have shown that the i.i.d. assumption can be weakened to mild conditions. We consider the ARCH(∞) model where the innovation processes are strictly stationary and λ-weakly dependent instead of independent and identically distributed. We provide sufficient conditions for the existence of a unique stationary and λ-weakly dependent Volterra series type solution to the given ARCH(∞) process. The FCLT for the stationary and λ-weakly dependent solution is also obtained by adding weak dependence coefficients condition on innovations and condition on ARCH(∞) parameters. The FCLT for GARCH(p; q) model with λ-weakly dependent innovations is considered as an example.

목차

Abstract
1. Introduction
2. Main results
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0