메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이보람 (목포대학교) 윤태종 (목포대학교) 오원빈 (목포대학교) 이충우 (목포대학교) 김학형 (목포대학교) 정영재 (목포대학교) 김일수 (목포대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.38 No.4
발행연도
2021.4
수록면
253 - 260 (8page)
DOI
10.7736/JKSPE.020.070

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Social interest in the 4th industry, intelligent factories, and smart manufacturing is continually growing along with the core technologies like big data and artificial intelligence, which can generate meaningful information by collecting and accumulating sensor data. Demand for industrial automation equipment is increasing worldwide due to the efforts needed to modernize manufacturing facilities, reduce automation and cycle time, and improve quality. Currently, the majority of research is focused on the development of automation facilities and improving productivity. The research on the contents of real-time data considering the characteristics of the cutting machine plasma machine is insufficient. In this study, based on the current data measured according to cutting current and cutting speed, a reference value for cutting quality is presented and the optimal process parameter has been selected. A model for predicting cutting quality by introducing the Mahalanobis Distance Method is presented. An attempt has been made to derive selection and optimal cutting process variables. Based on the predictive model, threshold values were specified and used in real-time data to consider the correlations between multivariate variables and evaluate the degree of scattering around the average of specific values of each variable. Also, process parameters suitable for surface roughness were calculated.

목차

1. 서론
2. 절단 실험
3. 실험 결과
4. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0