메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Igor V. Arinichev (Kuban State University) Sergey V. Polyanskikh (Plarium) Galina V. Volkova (All-Russian Research Institute of Biological Plant Protection) Irina V. Arinicheva (Kuban State Agrarian University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.21 No.1
발행연도
2021.3
수록면
1 - 11 (11page)
DOI
10.5391/IJFIS.2021.21.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the article, the authors study the possibility of detecting some fungal diseases of rice using visual computing and machine learning techniques. Leaf blast and brown spot diseases are considered. Modern computer vision methods based on convolutional neural networks are used to identify a particular disease on an image. The authors compare the four most successful and compact convolutional neural network architectures: GoogleNet, ResNet-18, SqueezeNet-1.0, and DenseNet-121. The authors show that in the dataset used for the analysis, the disease can be detected with an accuracy of at least 95%. Testing the algorithm on real data not used in training showed an accuracy of up to 95.6%. This is a good indicator of the reliability and stability of the obtained solution even to a change in the data distribution. Data not used in training showed an accuracy of up to 95.6%. This is a good indicator of the reliability and stability of the obtained solution even to a change in the data distribution.

목차

Abstract
1. Introduction
2. Theory and Methods
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-001646927